Primitive equations with linearly growing initial data
نویسندگان
چکیده
منابع مشابه
L2(Rn) estimate of the solution to the Navier-Stokes equations with linearly growth initial data
In this article, we consider the incompressible Navier-Stokes equations with linearly growing initial data U0 := u0(x) −Mx. Here M is an n × n matrix, trM = 0, M2 is symmetric and u0 ∈ L2(Rn) ∩ Ln(Rn). Under these conditions, we consider v(t) := u(t) − eu0, where u(x) := U(x) −Mx and U(x) is the mild solution of the incompressible Navier-Stokes equations with linearly growing initial data. We s...
متن کاملGlobal well-posedness for the primitive equations with less regular initial data
Résumé: Cet article est consacré à l’étude du temps d’existence des solutions du système des équations primitives pour des données moins régulières. On interpole les résultats d’existence globale à données Ḣ 1 2 petites fournis par le théorème de FujitaKato, et le résultat de [6] qui donne l’existence globale si le paramètre de Rossby ε est suffisamment petit, et pour des données plus régulière...
متن کاملDissipative quasi - geostrophic equations with initial data
In this paper, we study the solutions of the initial-value problem (IVP) for the quasi-geostrophic equations, namely ∂tθ + u.∇θ + κ (−∆) θ = 0, on R × ]0,+∞[ , θ (x, 0) = θ0(x), x ∈ R. Our goal is to establish the existence and uniqueness of regulars solutions for the two-dimentional dissipative quasi-geostrophic equation with initial data in a Sobolev space H satisfying suitable conditions wit...
متن کاملNonlinear dispersive equations with random initial data
In the first part of this thesis we consider the defocusing nonlinear wave equation of power-type on R 3. We establish an almost sure global existence result with respect to a suitable randomization of the initial data. In particular, this provides examples of initial data of supercritical regularity which lead to global solutions. The proof is based upon Bourgain's high-low frequency decomposi...
متن کاملQuasi-geostrophic-type equations with initial data in Morrey spaces
This paper studies the well posedness of the initial value problem for the quasigeostrophic type equations ∂θ ∂t + u∇θ + (−1)γ θ = 0 on R × (0,∞) θ(x, 0) = θ0(x) x ∈ R where γ (0 < γ 6 1) is a fixed parameter and u = (uj ) is divergence free and determined from θ through the Riesz transform uj = ±Rπ(j)θ (π(j) being a permutation of j , j = 1, 2, · · · , n). The initial data θ0 is taken in certa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE
سال: 2019
ISSN: 2036-2145,0391-173X
DOI: 10.2422/2036-2145.201701_012